Lesson 18: Evaluating Powers Of Complex Numbers (De Moivre’s Thm)


Lesson on using De Moivre's theorem in simplifying complex numbers in trigonometric form. Basically, De Moivre's theorem states that if z = r (cos + isin), then z^n = r^n (cosn + isinn).

1:40 Evaluate (-1 + i(sqrt3))^12
5:22 Use De Moivre's theorem to solve for (1+i)^5.

Numberbender lesson module: http://www.numberbender.com/lesson/mo... 


For more math video updates, subscribe here! 

Follow us on Twitter https://twitter.com/number_bender

Like us on Facebook https://www.facebook.com/thenumberbender


Thank you for watching!